

Michael Vaughn
ITT Geospatial Systems

18 Mar 2010

WorldView-2 (WV-2) Characterization and ICC Profiles

This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR).

Overview

- The Need for Characterization
- The Process
- Insertion into the Processing Architecture
- Transformation to Color Management
- Definition of ICC Profiles
- Processing with ICC Profiles

The Need for Characterization

- Spectral Response
 - Capture device does not "see" what the human sees.
 - Need to transform the image from the space the device "saw" to the space that the human observer "sees"

WV-2 Sensor Characterization

 WorldView-2 Spectral Sensitivity allows for much better match to human visual system than previous sensors

Color Matching Functions vs. WorldView-2 Visible Spectral Sensitivities

Ground Target Creation

- Determine set of patches needed for sampling color space for given sensor
- Determine number of patches that will appropriate sample the color space
- Build the targets with the corresponding spectra

Target Layout

WorldView-2 and QB Gamuts vs. Ground Truth Patches

- Adequate sampling of sensor gamut was accomplished
- Patch colors fit
 within the gamuts of
 WorldView-2 and QB
 sensor gamuts
- Provides ability to characterize either sensor with same targets

Ground Truth Patch Spectra

Color Difference Evaluation

Visual Effect of Characterization

Baseline Processing

Processing Post- WV2 Sensor Characterization

Reference

Truth

Processed

Overview of Color Transformation

Insertion into the Processing Architecture

- Easily standardized
- Commercially accepted
 - Low risk in adoption
- Adaptable for variety of sensor types through a data driven paradigm

Transition to Color Management

The Color Management Process (CMP)

- The CMP is a system of well defined steps that ensure that the communication of color is accomplished
- These steps are comprised of binary files called ICC profiles
 - ICC = International Color Consortium
 - Profiles convert colors from one device to another
 - There are five (5) types of profiles that can be used in implementation of the CMP
 - Input (RGB → PCS)
 - Output (PCS → RGB)
 - Display (PCS → RGB, RGB → PCS)
 - Device (RGB → RGB)
 - Abstract (PCS → PCS)

Current Color Communication Issues

Each device speaks it's own color "language"

The Color Management Process (CMP)

 The language concept is used to "communicate" color **Sensor Data** WV-2 Quickbird Airborne **Profile Connection Space CRT Flat Panel Print**

Integration into Example System

ICC Profiles

- The International Color Consortium defined a standard for defining image processing color and tone transforms
- Uses "connection space" to do processing.
 - Sensor RGB is converted to connection space
 - Image is converted from connection space to display digital counts on target device
 - Commonly used connection space is CIEL*a*b* or tristimulus XYZ
 - Connection space is a defined reference that allows for hand off from one device to another without knowledge of detailed device characteristics
- Use of common space allows interchange between various inputs (e.g. sensors, libraries) and outputs (e.g. displays, printers)

ICC Profile Types

- Device (native device → independent device [Profile Connection Space–PCS])
- Input (sensors, scanners, cameras)
 - Display (monitors)
 - Output (printers, plotters)
- DeviceLink (device → device)
- ColorSpace conversion (non-device → PCS)
- Abstract (PCS → PCS)
- Named Color (device → PCS; for specific colors, not images)

Summary

- Characterization of a sensor is needed to ensure that proper visual presentation is obtained
- Characterization also enables multiband systems to effectively utilize their native bands for more optimized processing
- A color managed paradigm is necessary for multiband systems to obtain the best flexibility and utility of their sensor bands
- The color management process is a means to achieve standardized processing as well as flexibility when working with multiband imagery
- ITT has developed capabilities that will allow for the application of color managed techniques multiband imagery

